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LONG-TERM GOALS 

The long-term goals of this project are to improve our ability to monitor and predict the ocean 
circulation through the assessment and design of ocean observing systems; and through the 
development of practical methods for ocean data assimilation. 

OBJECTIVES 

The immediate scientific objective of this research is to develop a suite of ensemble-based data 
assimilation tools for the objective design and assessment of ocean observing systems for long-term 
monitoring programs.  

APPROACH 

The methods developed under this project exploit ensemble-data assimilation theory. They build on the 
work of Bishop et al. (2001). The methods seek to identify the set of observations that minimise the 
analysis error variance for a predefined variable or quantity (e.g., surface currents in a given region). 

Under this project, the development and assessment of new methods in data assimilation and observing 
system design is initially conducted through their application to small, idealised models (e.g., Lorenz 
and Emmanuel 1998; Oke et al. 2006). This approach facilitates a thorough examination of the 
theoretical properties, limitations and strengths of different approaches. 

Subsequent to their development and testing on idealised models, the techniques investigated under 
this project are applied to realistic applications to support the design and maintenance of ongoing and 
planned observation programs. This includes assessments of the Global Ocean Observing System 
(GOOS) for constraining an eddy-resolving ocean forecast system (e.g., Oke and Schiller 2007); and 
the design and assessment of various components of the Australian Integrated Marine Observing 
System (IMOS; see related projects). For these activities, we exploit the Bluelink ocean forecast and 
reanalysis system, developed by CSIRO and the Bureau of Meteorology (BoM). The Bluelink system 
was developed and tested through a 15-year reanalysis, called the Bluelink ReANalysis (BRAN; Oke 
et al. 2008a; Schiller et al. 2008. The Bluelink forecast system became operational at the BoM in 
August 2007 (www.bom.gov.au/oceanography/forecasts). 
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Dr. Peter Oke is the P.I. on this project and leads the data assimilation activities at the Centre for 
Australian Climate and Weather Research (CAWCR), a partnership between CSIRO and the BoM. 
Other researchers contributing to this research include Dr Pavel Sakov, now based at NERSC in 
Norway, and Dr. Hans Ngodock and Dr. Gregg Jacobs from NRL.  

WORK COMPLETED 

We have developed a method for objective array design and applied it to a suite of applications, 
including the design of a surface mooring array in the tropical Indian Ocean (Sakov and Oke 2008a). 
Subsequently, we have generalized and tested the method for multivariate applications and to represent 
different observation types that include satellite observations of sea-level anomaly (SLA) and sea-
surface temperature (SST), in situ observations of temperature (T), salinity (S), sea-level and velocity 
(u and v), and land-based radar observations of u and v. This capability has been applied to the design 
and assessment of a component of the Australian IMOS. This includes an evaluation of different 
options for the deployment of HF radars and gliders off the south-east coast of Australia (Oke et al. 
2008b). 

To date, all of the techniques employed under this project have been based on ensemble data 
assimilation theory. In the course of this research we have explored the importance of different 
assimilation algorithms for ensemble square root filters (ESRFs). Based on these explorations, we have 
shown that only mean-preserving ensemble transformations should be used. These findings have been 
documented by Sakov and Oke (2008b). We have also proposed a new flavour of the EnKF that we 
call the deterministic EnKF (DEnKF). The DEnKF provides a computationally efficient alternative 
formulation to other ESRFs, but unlike most ESRFs, the DEnKF readily permits covariance 
localisation, making it an attractive option for realistic, large dimension applications. The details of the 
DEnKF are documented by Sakov and Oke (2008c).  

A series of observing system experiments (OSEs) has been undertaken to investigate the relative 
importance of different observation types (Argo, altimeter and SST data) for constraining an eddy 
resolving ocean model (Oke and Schiller 2007). This work has recently been extended, using an 
analysis of the so-called influence matrix (Cardinali et al. 2004) to evaluate the influence of individual 
observations in a given analysis. This approach is inexpensive; and can readily be applied in an 
operational environment to monitor and assess the GOOS in near-real-time.  

RESULTS 

The objective of the array design method described by Sakov and Oke (2008a) is based on ensemble 
data assimilation theory. This method simply takes a background ensemble Ab, from an EnKF, ESRF 
or Ensenble Optimal Interpolation (EnOI) system and estimates the analysis ensemble Aa that results 
from assimilating a set of observations, defined by H and R. Here H is the observation operator and R 
is the observation error covariance matrix. In practice, R is estimated based on the expected errors 
associated with a hypothetical set of observations and H is constructed to represent the details of the 
observing system, including the observation types (i.e., what is to be observed) and the observation 
locations. The update of Ab to Aa is achieved using a matrix transformation that is borrowed from 
ESRF theory (Bishop et al. 2001). We examine the diagonals of the ensemble estimates of the 
background error covariance matrix Pb , and the analysis error covariance matrix Pa, given by: 
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Pb = Ab AbT / (m-1), and (1) 

Pa = Aa AaT / (m-1)     (2)  

where m is the ensemble size, to quantify the percentage improvement %I, achieved by assimilating a 
given set of observations: 

%I = (εSTD – εSTD+NEW) / εSTD x 100, (3) 

where εSTD is the estimated standard deviation of the analysis errors when a standard array of 
observations are assimilated (e.g., altimetry, SST and Argo); and εSTD+NEW is the estimated standard 
deviation of the analysis errors when a new array of observations (e.g., HF radar) are added to the 
standard array of observations. 

We have applied this method to a number of different scenarios including the design of a tropical 
Indian Ocean mooring array (Sakov and Oke 2008a) and the design of a shelf observation array off 
south-eastern Australia (Oke et al. 2008b). 

For the latest study (Oke et al. 2008b), we have adopted the error statistics used by the Bluelink 
reanalysis and forecast system (Oke et al. 2008a). The Bluelink data assimilation system is based on 
EnOI. We simply use the Bluelink ensemble to quantify the background field errors and covariances in 
(1). The details of the Bluelink assimilation system are mimicked as closely as possible enabling an 
assessment of the likely benefits of future observations programs to the Bluelink forecast and 
reanalysis system. As a first step to this study, we assess the validity of the assumed error variances 
used under Bluelink (Figure 1). This involves a comparison between the background field (BGF) and 
analysis 
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Figure 1: Maps showing the theoretical (top) and actual (bottom) BGF errors (a-b), analysis errors 
(c-d) and percentage improvement (e-f), from (7), for SLA. Contour intervals for the BGF error, 

analysis error and percentage improvement are 0.03 m, 0.005 m and 2.5% respectively. Note that the 
range is different for the BGF and analysis errors. Adapted from Oke et al. 2008b, submitted. 

[Figure showing comparisons between the assumed errors used by Bluelink and the actual errors 
based on a long reanalysis] 

errors assumed by the Bluelink system (labeled as “Theoretical” in Figure 1) and the actual errors from 
a long data assimilating integration (labeled “Actual (BRAN)” in Figure 1). The actual errors 
presented in Figure 1 are estimated by comparing model fields and analyses to along-track 
observations from altimetry. If the errors assumed by the Bluelink Ocean Data Assimilation System 
(BODAS; Oke et al. 2008a) are correct, the fields in the top and bottom rows of each column of Figure 
1 would be equivalent. They are clearly different in detail, but show many similar features, like the 
band of high error aligned with the coast. Similarly, the order of magnitude of these fields are similar 
for both the theoretical and actual estimates (BGF errors are 0.1-0.3 m; Analysis errors are 0.03-0.06 
m). These comparisons indicate that the error estimates used in Bluelink, and in the observing system 
study described here, are imprecise, but provide a reasonable first guess. 

Subsequent to the evaluation of the error statistics used under Bluelink, we have undertaken a study to 
assess the likely benefits of the component of the Australian IMOS that is planned for the continental 
shelf waters off New South Wales, Australia, hereafter, the NSW-IMOS. Under NSW-IMOS, the 
deployment of one or two short-range HF radar arrays is planned, along with the deployment of a 
Slocum glider. There are several locations where the HF radar systems could possibly be deployed. We 
estimate the expected benefits of the different options to the Bluelink system. We consider both short-
range and long-range HF radars. We also estimate the impact of assimilating T and S observations 
from gliders deployed along sections of constant latitude within 200 km of the coast. Results showing 
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the %I, from equation (3), for the HF radar assessment, based on 50 independent realisations of the 
analysis errors, are shown in Figure 2. We find that, as expected, assimilation of HF radar observations 
should significantly improve the surface velocity fields in the vicinity of the observations. But we also 
find that assimilation of HF radar observations should have a significant benefit to other model 
variables, including sub-surface T and S, and sea-level. Similar results for gliders suggest that while 
the benefits of assimilating the glider observations are likely to be limited to the immediate vicinity of 
the observations, owing to the short decorrelation length-scales over the continental shelf, the analysis 
errors near the observations are likely to be significantly reduced by assimilating the glider data. 

Common to the application of most statistical data assimilation systems, such as OI, EnOI, EnKF, 
ESRF and 3DVar is the employment of a gain matrix, K. The gain matrix depends on the observation 
and background error covariances assumed by the system. A simple function of the gain matrix, 
referred to here as the influence matrix, is given by KTHT (Cardinali et al. 2004). The influence matrix 
is a well-known concept in statistical fields, but has only recently been derived for modern data 
assimilation systems. The influence matrix can diagnose the relative contributions of observations and 
background fields to a given analysis; the relative influence of different observation types; and the 
effective degrees of freedom of signal (DFS) in different data types.  

Using the practical method of Chapnik et al. (2006) for approximating the diagonal elements of the 
influence matrix, known as the self-sensitivities, we present some preliminary estimates of the 
Information Content (IC) and the DFS in Figure 3. The number of observations of each data type 
shown in Figure 3 refers to the number of super-observations in the Australian region (see Oke et al. 
2008a for details). The DFS is the estimated sub-trace of KTHT for each data type, and provides an 
estimate of the effective number of independent observations assimilated. The IC, presented as a 
percentage, is simply based on the ratio of the DFS and the number of observations. Based on these 
results, it is clear that both altimetry and SST observations are well used by the Bluelink system. 
However, information from the Argo data is clearly not extracted by the Bluelink system in an optimal 
way. This suggests that the error estimates used by the Bluelink system (Oke et al. 2008) need to be 
revisited and refined. 
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Figure 2: Estimated %I, from (3), for velocity (row 1-2), T and S at 205 m depth (row 3-4) and sea-
level (row 5) for different options along the NSW coast. The locations of the assumed u and v 


observations are indicated in each column by the gray dots. Adapted from 

Oke et al. 2008b, submitted. 


[Figure showing the expected % improvement in analyses when observations from different HF 

radar deployments are assimilated by the Bluelink] 
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Figure 3: Preliminary estimates of the Information Content (IC; %), degrees of freedom of signal 

(DFS) and the number of assimilated super-observations (# Obs) for the Bluelink reanalysis system 

in the region 90-180oE, 60oS-equator, computed for 1 January 2006. The scale for the IC is to the 


left and the scale for the DFS and # Obs is to the right. 

[Figure showing the information content of different observation types based on the error estimated 


used by the Bluelink system] 


IMPACT/APPLICATIONS 

The tools for objective array design that have been developed under this project are potentially very 
powerful. Given a time series, or model ensemble, of oceanic fields for some region, these tools 
facilitate the efficient design and assessment of an observation array for that region. Our experiments 
indicate that the most critical aspect of any application is formulating the cost function. That is, in 
determining exactly what it is that we wish to monitor. For example, an “optimal” array for monitoring 
intraseasonal mixed layer depth is likely to be very different from an “optimal” array for monitoring 
interannual variability (Sakov and Oke 2008a). The tools developed under this project have been 
applied to support the design of the NSW-IMOS, a new integrated marine observing system for south-
eastern Australia (Oke et al. 2008a). The results described by Oke et al. (2008b), relating to the NSW-
IMOS, are being used by the Bluelink science team to set priorities on the uptake on new observation 
types into the Bluelink forecast and reanalysis system. 

The results from the OSEs presented by Oke and Schiller (2007) provide an important assessment of 
the performance of the Global Ocean Observing System (GOOS) for a data-assimilating, eddy-
resolving ocean forecast system. Such information is essential for planning investment in the 
maintenance and development of the GOOS. The analyses of the influence matrix, relevant to the 
Bluelink system, provide guidance for refining the Bluelink assimilation system and improving its 
predictive skill. 

Sakov and Oke (2008b) demonstrate, from both theory and a suite of applications, that only mean-
preserving, or zero-centered, ensemble transformations should be used by ESRFs. This is a very clear 
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result, based on both theoretical and experimental evidence. This development has been adopted by the 
EnKF community (see http://enkf.nersc.no/Code/Analysis/meanpres.pdf). 

RELATED PROJECTS 

Bluelink is a partnership between CSIRO, the Bureau of Meteorology and the Royal Australian Navy. 
Many of the research activities undertaken in Bluelink have strong synergies for the project that is the 
subject of this annual report. The main objective of Bluelink is the development and application of an 
ocean forecast system for the mesoscale circulation around Australia. Applications of the Bluelink 
system are well documented (e.g., Oke et al. 2005; 2008a; Schiller et al. 2008).  

The Australian Integrated Marine Observing System (IMOS) program (www.imos.org.au). IMOS 
involves the provision of observational platforms (e.g., gliders, high-frequency radars, moorings) to 
establish a long-term monitoring capability for the oceans around Australia. 
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